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Abstract
For the two-dimensional Toda equations corresponding to the Kac–Moody
algebras C

(1)
l and D

(2)
l+1, the Darboux transformations which keep all the

reductions of the Lax pairs are constructed. The lowest degrees of the Darboux
transformations are 2l + 2 for C

(1)
l and 2l for D

(2)
l+1. Exact solutions of these

Toda equations are presented in a purely algebraic way.

PACS numbers: 05.45.−a, 05.45.Yv, 02.30.Jr

1. Introduction

The two-dimensional Toda equations [1, 2] are typical integrable systems which have been
studied by many authors [3–8]. They have also important applications in physics for nonlinear
lattice, as well as in differential geometry for affine spheres, Laplace sequences, harmonic tori
etc [3, 9–16].

For any Kac–Moody algebra g of affine type, there is a two-dimensional Toda equation,
which is written as

wk,xt = Ak exp

(
n∑

i=1

ckiwi

)
− A0vk exp

(
n∑

i=1

c0iwi

)
(k = 1, . . . , n) (1)

where C = (cij )0�i,j�n is the generalized Cartan matrix of g, v = (v0, v1, . . . , vn)
T is a

nonzero vector such that Cv = 0, and A0, . . . , An are real constants [16, 17]. Various
Kac–Moody algebras correspond to various boundary conditions of the two-dimensional Toda
equations. It was shown in [18] that these equations are integrable and the Lax pairs were
presented. When g = A

(1)
l , the Toda equation is periodic. Its Lax pair has a unitary symmetry
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and a cyclic symmetry of order l, and the Darboux transformation keeping these symmetries
was presented by [5], and its geometric applications can be found in [3, 10–12].

There are also some work for other Kac–Moody algebras [19–22], although the
symmetries are more complicated. In [21], the binary Darboux transformations for two-
dimensional A

(2)
2l , C

(1)
l and D

(2)
l+1 Toda equations were obtained from the periodic reductions

of the binary Darboux transformations for A∞, B∞ and C∞ Toda equations. In terms of the
binary Darboux transformation, the solutions of the Toda equations are expressed by some
integrals of the solutions of the Lax pairs. In order to get the explicit solutions which are
purely algebraically expressed by the solutions of the Lax pair, usual Darboux transformations
(without integrals) are necessary. In [23], explicit solutions of the two-dimensional A

(2)
2

Toda equation (also called the Tzitzeica equation) were presented for real spectral parameters.
In [24], explicit solutions of the two-dimensional A

(2)
2l Toda equation were obtained for both

real and complex spectral parameters. In that case, the order of the matrices in the Lax pair
is 2l + 1 and the Lax pair has a unitary symmetry, a reality symmetry and a cyclic symmetry
of order 2l + 1. However, the number of independent functions is only l. In order to keep
all these symmetries, the order of the Darboux transformation is at least 4l + 2 when all the
spectral parameters are complex.

In the present paper, we consider a 2n × 2n Lax pair which corresponds to the two-
dimensional Toda equations with Kac–Moody algebras g = C

(1)
l (n = l + 1) and D

(2)
l+1 (n = l).

It has also a unitary symmetry, a reality symmetry and a cyclic symmetry of order 2n, and
the number of independent functions is only l. Apart from the order of the matrices, the Lax
pairs are similar to that for the A

(2)
2l case. However, in this even order case, the spectrum in

the construction of Darboux transformation is different from that in the odd-order case. This
leads to a different construction of the Darboux transformations.

In section 2, we discuss a general Lax pair with matrices of even order which includes
exactly the two-dimensional C(1)

l and D
(2)
l+1 Toda equations. Explicit form of the corresponding

evolution equations are presented in section 3. In section 4, the Darboux transformation of
degree 2n is constructed and the exact solutions are written down in an explicit way.

2. Structure of Lax pair

In this paper, all the matrices in the Lax pairs are of order 2n.
For any 2n × 2n matrix A or any 2n-dimensional vector v, and for any integers i and j ,

define Aij = Ai ′j ′ and vi = vi ′ where i ≡ i ′ mod 2n, j ≡ j ′ mod 2n and 1 � i ′, j ′ � 2n.
Especially, δij equals 1 if i ≡ j mod 2n and equals 0 otherwise.

Let ω = eπ i/n, � = diag(1, ω−1, . . . , ω−2n+1). Let m be a fixed integer. Let
K = (Kij ) = (δi,m−j )2n×2n, J = (Jij ) = (δi,j−1)2n×2n be constant matrices. Then K is
symmetric and �∗K = ωm−2K� where �∗ refers to the Hermitian conjugate of �. Let

P = (pi(x, t)δij )1�i,j�2n, Q = (qj (x, t)δi,j+1)1�i,j�2n (2)

where pi’s and qi’s are real functions satisfying

pm−i = −pi, qm−1−i = qi (i = 1, 2, . . . , 2n). (3)

Then the following relations hold

J̄ = J, �J�−1 = ωJ, KJK−1 = J T ,

P̄ = P, �P�−1 = P, KPK−1 = −P T ,

Q̄ = Q, �Q�−1 = ω−1Q, KQK−1 = QT .

(4)
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Remark 1. It is easy to check that for the given constant matrix J = (δi,j−1)1�i,j�2n, (4) is
equivalent to (2) and (3).

Denote U(x, t, λ) = λJ + P(x, t), V (x, t, λ) = λ−1Q(x, t), then the relations (4) are
equivalent to

U(x, t, λ) = U(x, t, λ̄), V (x, t, λ) = V (x, t, λ̄)

�U(x, t, λ)�−1 = U(x, t, ωλ), �V (x, t, λ)�−1 = V (x, t, ωλ),

KU(x, t, λ)K−1 = −(U(x, t,−λ̄))∗, KV (x, t, λ)K−1 = −(V (x, t,−λ̄))∗.

(5)

These relations mean that U and V satisfy a reality symmetry, a cyclic symmetry of order
2n and a unitary symmetry with respect to the metric given by K.

Now we consider the Lax pair

�x = U(x, t, λ)� = (λJ + P(x, t))�, �t = V (x, t, λ)� = λ−1Q(x, t)� (6)

and its integrability conditions

Qx = [P,Q], Pt + [J,Q] = 0. (7)

Written in terms of pj ’s and qj ’s, the integrability conditions (7) become

qi,x = (pi+1 − pi)qi, pi,t = qi−1 − qi (i = 1, . . . , 2n). (8)

These are the evolution equations which will be discussed in this paper. They include exactly
the two-dimensional C

(1)
l (n = l + 1) and D

(2)
l (n = l) Toda equations, as will be seen in the

next section.

Remark 2. Equation (8) is compatible with the constraints (3).

Remark 3. For any 2n × 2n matrix A = (Aij ), let

Ã = (Ãij )1�i,j�2n = (Ai+1,j+1)1�i,j�2n,

then Kij = δi,m−j implies K̃ij = δi,m−2−j . �∗K = ωm−2K� implies �̃∗K̃ = ωm−2K̃�̃

automatically. Since �̃ij = �i+1,j+1 = ω−1�ij , �̃
∗K̃ = ωm−2K̃�̃ implies �∗K̃ = ωm−4K̃�.

Under the transformation (�,K, J, P,Q,m) → (�, K̃, J̃ , P̃ , Q̃,m − 2), the evolution
equations (8) are equivalent (only the subscripts in pj ’s, qj ’s are changed). Therefore,
we only need to consider the cases m = 0 and 1.

In order to construct Darboux transformations in the next section, we need the following
lemma.

Lemma 1. Suppose µ ∈ C\{0}.
(i) If �(x, t) is a solution of (6) for λ = µ, then �̄(x, t) is a solution of (6) for λ = µ̄.

(ii) If �(x, t) is a solution of (6) for λ = µ, then for any integer k,�k�(x, t) is a solution of
(6) for λ = ωkµ.

(iii) If �(x, t) is a solution of (6) for λ = µ, then �n�̄ is a solution of (6) for λ = −µ̄.
(iv) If �(x, t) is a solution of (6) for λ = µ, then � = K�n� is a solution of the adjoint Lax

pair

�x = −U(µ)T �, �t = −V (µ)T �. (9)

Therefore, (�T K�n�)x = 0, (�T K�n�)t = 0.

Proof. These result follow from (5) directly. �
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3. Explicit form of the evolution equations

According to remark 3, we only need to consider the evolution equations (8) with m = 0 and
1.

3.1. Case C
(1)
l : n = l + 1,m = 0

pi = −p2l+2−i = ui,x, (1 � i � l), pl+1 = p2l+2 = 0,

qi = q2l+1−i = eui+1−ui (1 � i � l − 1),

ql = ql+1 = e−ul , q2l+1 = q2l+2 = eu1 .

(10)

When l � 2, the evolution equations are

u1,xt = eu1 − eu2−u1 ,

uj,xt = euj −uj−1 − euj+1−uj (2 � j � l − 1),

ul,xt = eul−ul−1 − e−ul .

(11)

Let wj = −(u1 + · · · + uj )(j = 1, . . . , l − 1) and wl = − 1
2 (u1 + · · · + ul), then (w1, . . . , wl)

satisfies
w1,xt = −e−w1 + e2w1−w2 ,

wj,xt = −e−w1 + e2wj −wj−1−wj+1 (j = 2, . . . , l − 2),

wl−1,xt = −e−w1 + e2wl−1−wl−1−2wl ,

wl,xt = − 1
2 e−w1 + 1

2 e2wl−wl−1 ,

(12)

which is the two-dimensional Toda equation corresponding to the generalized Cartan matrix

C =



2 −1
−2 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −2
−1 2


(13)

of C
(1)
l and C

(
1
2 , 1, . . . , 1

2

)T = 0.

3.2. Case D
(2)
l+1: n = l, m = 1

pi = −p2l+1−i = ui,x, (1 � i � l),

qi = q2l−i = eui+1−ui (1 � i � l − 1),

ql = e−2ul , q2l = e2u1 .

(14)

When l � 2, the evolution equations are

u1,xt = e2u1 − eu2−u1 ,

uj,xt = euj −uj−1 − euj+1−uj (2 � j � l − 1),

ul,xt = eul−ul−1 − e−2ul .

(15)

Let wj = −(u1 + · · · + uj )(j = 1, . . . , l), then (w1, . . . , wl) satisfies

w1,xt = − e−2w1 + e2w1−w2 ,

wj,xt = − e−2w1 + e2wj −wj−1−wj+1 (j = 2, . . . , l − 1),

wl,xt = − e−2w1 + e2wl−2wl−1 ,

(16)
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which is the two-dimensional Toda equation corresponding to the generalized Cartan matrix

C =



2 −2
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−2 2


(17)

of D
(2)
l+1 and C(1, 1, . . . , 1, 1)T = 0.

4. Darboux transformations and exact solutions

Now we construct the Darboux transformation which keeps all the symmetries in (5).
Let µ be a nonzero complex number such that arg(µ) �∈ {

kπ
2n

∣∣k ∈ Z
}
, λj = ωj−1µ (j =

1, 2, . . . , 2n). Then all λj and −λ̄j (j = 1, 2, . . . , 2n) are distinct. Let H be a 2n × n matrix
solution of (6) for λ = µ such that HT K�nH = 0 at certain point (x0, t0). Then (iv) of
lemma 1 implies that HT K�nH = 0 holds identically. Let Hj = �j−1H (j = 1, 2, . . . , 2n).
Then (ii) of lemma 1 implies that Hj is a solution of (6) for λ = λj (j = 1, 2, . . . , 2n).

Remark 4. Considering lemma 1, if µ is a spectral parameter in constructing Darboux
transformation, it is natural to take all ωj−1µ and ωj−1µ (j = 1, . . . , 2n) so that the reality
symmetry and the cyclic symmetry are kept. However, since ωj−1µ = −ωj+n−1µ, according
to the standard construction of unitary Darboux transformation, ωj−1µ cannot be specified
independently in the spectrum of Darboux transformation. Hence we choose only n spectral
parameters λj = ωj−1µ (j = 1, . . . , 2n) here.

In this way, the Darboux transformation cannot be constructed only in terms of some
column solutions of the Lax pair. Instead, the above 2n × n matrix solutions Hj ’s are
necessary in the construction.

According to (iii) of lemma 1, if H is a 2n × n matrix solution of the Lax pair with
spectral parameter λ, then �nH̄ is a solution of the Lax pair with −λ̄. Again, by the standard
construction of unitary Darboux transformation, we want that these two matrices are orthogonal
with respect to the metric defined by K, i.e. HT �nKH = (�nH̄ )∗KH = 0.

By a slight generalization of the method in [25, 26], the Darboux transformation is
constructed as follows. When det � �= 0, denote

�ij = H ∗
i KHj

λ̄i + λj

(18)

to be n × n matrices (i, j = 1, 2, . . . , 2n), � = (�ij )1�i,j�2n. Denote �−1 = (�̌ij )1�i,j�2n

where �̌ij ’s are n × n matrices. Let

G(x, t, λ) =
2n∏

s=1

(λ + λ̄s)

1 −
2n∑

i,j=1

Hi�̌ijH
∗
j K

λ + λ̄j

 . (19)

Then it can be checked directly that

G(x, t, λ)−1 =
2n∏

s=1

(λ + λ̄s)
−1

1 +
2n∑

i,j=1

Hi�̌ijH
∗
j K

λ − λi

 . (20)
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G(x, t, λ) is a polynomial of λ of degree 2n with 2n × 2n matrix coefficients. Write

G(x, t, λ) =
2n∑

j=0

(−1)jG2n−j (x, t)λj , G0(x, t) = I2n, (21)

and define

Ũ (x, t, λ) = G(x, t, λ)U(x, t, λ)G(x, t, λ)−1 + Gx(x, t, λ)G(x, t, λ)−1,

Ṽ (x, t, λ) = G(x, t, λ)V (x, t, λ)G(x, t, λ)−1 + Gt(x, t, λ)G(x, t, λ)−1.
(22)

Then for any solution � of (6), �̃ = G� satisfies �̃x = Ũ�̃, �̃t = Ṽ �̃.

Lemma 2. Ũ = λJ + P̃ , Ṽ = λ−1Q̃ where P̃ = P + [J,G1], Q̃ = G2nQG−1
2n .

Proof. The lemma is obtained by direct computation.
�

Lemma 3.

G(x, t,−λ̄)∗KG(x, t, λ) =
2n∏

s=1

(λ̄s + λ)(λs − λ)K. (23)

Proof. The equality (23) follows from

G(x, t,−λ̄)∗ = KG(x, t, λ)−1K−1
2n∏

s=1

(λ̄s + λ)(λs − λ), (24)

which is a direct result of (19), (20) and the fact that � is Hermitian. �

Lemma 4.

�G(x, t, ω−1λ)�−1 = G(x, t, λ). (25)

Proof.

�ij = H ∗(�∗)i−1K�j−1H

ω−i+1µ̄ + ωj−1µ
= ω(m−1)(i−1) H

∗K�i+j−2H

µ̄ + ωi+j−2µ
. (26)

From (26), �i+1,j−1 = ωm−1�ij , i.e. Ĵ �Ĵ = ωm−1� where Ĵ = J ⊗ In. It leads to
Ĵ �−1Ĵ = ωm−1�−1, i.e. �̌i+1,j−1 = ωm−1�̌ij . Substituting into (19), we get the result in the
lemma. �

Lemma 5.

G(x, t, λ̄) = G(x, t, λ). (27)

Proof. It is not easy to verify the result directly from (19), because for each λj ,
its complex conjugate is not taken as a spectral parameter in constructing Darboux
transformation. However, apart from the expression (19), there is another equivalent way
of constructing Darboux matrix [27, 28], i.e. G is uniquely determined by G(x, t, λk)Hk =
0,G(x, t,−λ̄k)�

nH̄k = 0 (k = 1, . . . , 2n). Here we follow this procedure to prove the
lemma.
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According to (19), for k = 1, 2, . . . , 2n,

G(x, t, λk)Hk =
2n∏

s=1

(λk + λ̄s)

Hk −
2n∑

i,j=1

Hi�̌ijH
∗
j KHk

λ̄j + λk

 = 0,

G(x, t,−λ̄k)�
nH̄k = −

∏
s �=k

(λ̄s − λ̄k)

2n∑
i=1

Hi�̌ikH
∗
k K�nH̄k

= −ω(m−2)(k−1)
∏
s �=k

(λ̄s − λ̄k)

2n∑
i=1

Hi�̌ikHT K�nH = 0.

(28)

Now we consider G(x, t, λ̄). Since λj+n = −λj ,

G(x, t, λ̄k)Hk = −
∏

s �=k+n

(λs − λk+n)

2n∑
i=1

H̄i�̌i,k+nH
T
k+nKHk

= −ω−(m−2)(k+n−1)
∏

s �=k+n

(λs − λk+n)

2n∑
i=1

H̄i�̌i,k+nH
T K�nH = 0.

(29)

On the other hand,

G(x, t,−λk)�
nH̄k =

2n∏
s=1

(λs − λ̄k)

�nHk −
2n∑

i,j=1

Hi�̌ijH
∗
j K�nHk

λ̄j − λk


j→j+n=====

2n∏
s=1

(λs − λ̄k)

�nHk + ω(m−2)n

2n∑
i,j=1

Hi�̌i,j+nH
∗
j KHk

λ̄j + λk



=
2n∏

s=1

(λs − λ̄k)

�nHk + (−1)m
2n∑

i,j=1

Hi�̌i,j+n�j,k

 = 0

(30)

since �i+n,j+n = (−1)m−1�ij .

Let 	(x, t, λ) = G(x, t, λ) − G(x, t, λ̄) and write

	(x, t, λ) =
2n−1∑
j=0

	2n−j (x, t)λj , (31)

then 	(x, t, λk)Hk = 0, 	(x, t,−λ̄k)�
nH̄k = 0 (k = 1, . . . , 2n). Written in components,

they are

2n−1∑
j=0

	2n−jHkλ
j

k = 0,

2n−1∑
j=0

	2n−j�
nH̄k(−λ̄k)

j = 0, (32)

(k = 1, . . . , 2n), i.e.

(	2n,	2n−1, . . . ,	1)M = 0 (33)

where M = (Mij )1�i�2n,1�j�4n with Mij = λi−1
j Hj and Mi,2n+j = (−λ̄j )

i−1�nH̄j for
i, j = 1, . . . , 2n.

Define the block matrix N = (Nij )1�i�4n,1�j�2n with

Nij = (−λ̄i)
−j+1H ∗

i K (34)
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and Ni,2n+j = λ
−j+1
i HT

i K�n for i, j = 1, . . . , 2n. Then

2n∑
k=1

NikMkj =
2n∑

k=1

(−λ̄i)
−k+1λk−1

j H ∗
i KHj

= 1 − (−λj/λ̄i)
2n

1 + λj/λ̄i

H ∗
i KHj = λ̄i(1 − (µ/µ̄)2n)�ij ,

2n∑
k=1

NikMk,2n+j =
2n∑

k=1

(λ̄j /λ̄i)
k−1H ∗

i K�nH̄j

= 2nδijH
T
i K�nHj = 0

(35)

since (λ̄j /λ̄i)
2n = 1 and

2n∑
k=1

(λ̄j /λ̄i)
k−1 =


1 − (λ̄j /λ̄i)

2n

1 − λ̄j /λ̄i

= 0 i �= j

2n i = j.

(36)

Likewise, we have

2n∑
k=1

N2n+i,kMkj = 0,

2n∑
k=1

N2n+i,kMk,2n+j = λi(1 − (µ̄/µ)2n)�̄ij . (37)

Note that each �ij is an n × n matrix (i, j = 1, . . . , 2n), we have

det(NM) = |µ|4n2
(1 − (µ/µ̄)2n)2n2

(1 − (µ̄/µ)2n)2n2 | det �|2. (38)

Since arg(µ) �∈ {
kπ
2n

∣∣k ∈ Z
}
, detM �= 0 holds whenever det � �= 0. The lemma is proved. �

Following lemmas 3–5, we know that Ũ (x, t, λ) = λJ +P̃ (x, t), Ṽ (x, t, λ) = λ−1Q̃(x, t)

satisfies (5). Hence, (4) and remark 1 implies that P̃ = (p̃iδij )2n×2n, Q̃ = (̃qj δi,j+1)2n×2n hold
where p̃i’s and q̃i’s are real functions satisfying p̃m−i = −p̃i , q̃m−1−i = q̃i (i = 1, 2, . . . , 2n).

Therefore, we get the Darboux transformation which keeps all the reductions. Now we
write down the solutions more explicitly.

The solution Q is expressed in terms of G2n. According to (19),

G2n = G(x, t, 0) =
2n∏

s=1

λ̄s

1 −
2n∑

i,j=1

Hi�̌ijH
∗
j K

λ̄j


= ω−n(2n−1)µ̄2n(1 − R∗�−1S2n) = −µ̄2n(1 − R∗�−1S2n)

(39)

where R and S2n are block matrices

R =

H ∗
1
...

H ∗
2n

 , S2n =

 λ̄−1
1 H ∗

1 K

...

λ̄−1
2n H ∗

2nK

 . (40)

Let

ξk =

 (ξk)1

...

(ξk)2n

 = (�k−1 ⊗ In)


In

In

...

In


 2n (k = 1, . . . , 2n), (41)
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where (ξk)i = ω−(k−1)(i−1)In, then ξ ∗
i ξj = 2nδij In. Moreover,

�ξk = ξ−k−m+3αk, �−1ξk = ξ−k−m+3α
−1
−k−m+3 (42)

where

αk =
2n∑

j=1

H ∗K�jH

µ̄ + ωjµ
ω−(k−1)j (43)

with α∗
k = α−k−m+3.

Write H = ( h1
.
.
.

h2n

)
where h1, . . . , h2n are 1 × n matrices. The ith column of R is ξ2−ih

∗
i

and the j th column of S2n is µ̄−1ξj−m+1h
∗
m−j . Hence, we have −µ̄−2nG2n = 1−R∗�−1S2n =

diag(η1, . . . , η2n) where

ηj = 1 − 2nµ̄−1hjα
−1
2−jh

∗
m−j . (44)

By (43),

α2−j =
2n∑

s=1

H ∗K�sH

µ̄ + ωsµ
ω(j−1)s =

2n∑
k=1

2n∑
s=1

ω(j−k)s

µ̄ + ωsµ
h∗

m−khk. (45)

Let θ be a constant with |θ | < 1. Then
2n∑

s=1

ω(j−k)s

µ̄ + θωsµ
= µ̄−1

2n∑
s=1

∞∑
l=0

ω(j−k+l)s(−θµ/µ̄)l

= 2nµ̄−1
∑

l�0,j−k+l≡0mod2n

(−θµ/µ̄)l.

(46)

Let l = 2nσ + {k − j} where {k} denotes the remainder of k divided by 2n, then the above
equality equals to

2nµ̄−1
∑
σ�0

(−θµ/µ̄)2nσ+{k−j} = 2nµ̄−1 (−θµ/µ̄){k−j}

1 − (−θµ/µ̄)2n
. (47)

Let θ → 1 − 0, then we have
2n∑

s=1

ω(j−k)s

µ̄ + ωsµ
= 2nµ̄−1(−1)k−j µ{k−j}µ̄2n−{k−j}

µ̄2n − µ2n
. (48)

Hence we get the expression of α2−j as

α2−j = 2nµ̄−1
2n∑

k=1

(−1)k−j µ{k−j}µ̄2n−{k−j}

µ̄2n − µ2n
h∗

m−khk. (49)

Lemma 5 implies that ηj ’s are real. Lemma 2 gives the transformation of the solution

q̃j = ηj+1

ηj

qj . (50)

From qm−1−j = qj , q̃m−1−j = q̃j , we know that ηjηm−j is independent of j . Considering
the specific expressions of qj , we get the transformations of the solutions u1, . . . , ul for both
cases C

(1)
l and D

(2)
l+1.

Case C
(1)
l : n = l + 1,m = 0. We have ηjη−j = η2

l+1 = η2
2l+2 (j = 1, 2, . . . , 2l + 2).

According to (10), the transformation is

ũj = uj + ln
ηj

η2l+2
= uj +

1

2
ln

ηj

η2l+2−j

(j = 1, . . . , l). (51)
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Case D
(2)
l+1: n = l, m = 1. We have ηjη1−j = ηlηl+1 = η1η2l (j = 1, 2, . . . , 2l). The

transformation is

ũj = uj + ln
ηj√
η1η2l

= uj +
1

2
ln

ηj

η2l+1−j

(j = 1, . . . , l). (52)

In summary, we have the following theorems.

Theorem 1. Suppose (u1, . . . , ul) is a solution of the two-dimensional C
(1)
l Toda

equation (11), µ is a nonzero complex number such that arg(µ) �= kπ
2l+2 for any integer k.

Let H = ( h1
.
.
.

h2l+2

)
be a (2l + 2) × (l + 1) solution of the Lax pair (6) with λ = µ where pj ’s and

qj ’s are given by (10). Let

ηj = 1 − hj

(
2l+2∑
k=1

(−1)k−j µ{k−j}µ̄2l+2−{k−j}

µ̄2l+2 − µ2l+2
h∗

2l+2−khk

)−1

h∗
2l+2−j (53)

(j = 1, 2, . . . , 2l + 2). Then

ũj = uj +
1

2
ln

ηj

η2l+2−j

(j = 1, . . . , l) (54)

gives a new solution of the two-dimensional C
(1)
l Toda equation (11).

Theorem 2. Suppose (u1, . . . , ul) is a solution of the two-dimensional D(2)
l+1 Toda equation (15),

µ is a nonzero complex number such that arg(µ) �= kπ
2l

for any integer k. Let H = (h1
.
.
.

h2l

)
be a

2l × l solution of the Lax pair (6) with λ = µ where pj ’s and qj ’s are given by (14). Let

ηj = 1 − hj

(
2l∑

k=1

(−1)k−j µ{k−j}µ̄2l−{k−j}

µ̄2l − µ2l
h∗

2l+1−khk

)−1

h∗
2l+1−j (55)

(j = 1, 2, . . . , 2l). Then

ũj = uj +
1

2
ln

ηj

η2l+1−j

(j = 1, . . . , l) (56)

gives a new solution of the two-dimensional D
(2)
l+1 Toda equation (15).
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